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Abstract 

The present paper examines what domain-general causal 
knowledge reasoners need for at least some outcome-variable 
types to construct useable content-specific causal knowledge. 
In particular, it explains why it is essential to have analytic 
knowledge of causal-invariance integration functions: 
knowledge for predicting the expected outcome assuming that 
the empirical knowledge acquired regarding a causal relation 
holds across the learning context and an application context.  
The paper reports two studies that support the hypothesis that 
preschool children have such knowledge regarding binary 
causes and effects, enabling them to generalize across 
contexts rationally, favoring the causal-invariance hypothesis 
over alternative hypotheses, including interaction (e.g., linear) 
integration functions, heuristics, and biases. 

Keywords: Causal induction; causal learning; causal 
invariance, rationality; cognitive development 

Introduction 
How do we humans best represent the world so that we 

are able to achieve desired outcomes? A basic requirement 
is that the world knowledge we acquire be useable.  
Whenever we use our past knowledge to achieve a desired 
outcome (e.g., avoid a certain food to prevent a skin or 
intestinal reaction), we are inevitably generalizing from the 
learning context (e.g., items for meals at home preceding 
past allergic reactions) to a subsequent new context (lunch 
at work the next day, food during foreign travel).  By 
contexts with respect to a cause in question, we mean 
occasions or settings where (known or unknown) enabling 
conditions and alternative causes of the target outcome may 
occur with different probabilities.  

By adulthood, humans appear to make causal judgments 
that suggest they assume causal invariance – namely, that 
causes operate in an invariant manner across the learning 
and application contexts – as a default and as a criterion for 
revising causal knowledge (e.g., Cheng, 1997; Liljeholm & 
Cheng, 2007; Lu, Rojas, Beckers & Yuille, 2016; Lu, 
Yuille, Liljeholm, Cheng & Holyoak, 2008). If the concept 
of causal invariance is essential to the construction of 
useable causal knowledge, we would expect young children 
to use it just as adults do. Alternatively, if the concept 
operates as an acquired strategy or heuristic in causal-
knowledge construction, young children would be less 
likely to use it, especially when its use requires 

mathematical skills that are far beyond the children’s 
general level of mathematical capability.  

A large literature on children’s causal reasoning shows 
that children are able to reason causally from a young age 
(e.g., Gopnik, 2009; Gweon & Schulz, 2011; Legare, 2012; 
Rakison & Krogh, 2012). For example, like adults, children 
can learn deterministic conjunctive or disjunctive causal 
relationships and generalize the relationship that better fits 
the evidence to other variables (Lucas, Bridgers, Griffiths & 
Gopnik, 2014). However, there has been little work on the 
essentiality of the causal-invariance concept in the shaping 
of causal knowledge.  In particular, it is not known whether 
children use that concept, rather than simple approximations 
or heuristics. Young children’s use of a probabilistic form of 
causal invariance would provide especially strong support 
for its essentiality.  

To see why knowledge of causal invariance is essential 
for constructing useable causal knowledge, consider 
situations in which a) there may be background causes 
present, b) these causes may vary from context to context, 
and c) the set of candidate causes under evaluation may not 
include one that generalizes well across contexts. Natural 
settings often hold these challenges.  When we want to infer 
what cures an illness, for example, the illness must have 
some non-zero probability of occurring due to some 
background generative cause. The illness need not occur 
across all individuals, suggesting that background 
alternative preventive causes may be present. And the 
illness may be more or less prevalent in different contexts 
(e.g., countries). The fact that the “no confounding” 
condition is a standard principle in experimental design is an 
indication of the pervasive need for the influence of a target 
cause to be teased apart from that of background causes. A 
further challenge is that our initial parsing of events to 
isolate distinct candidate causes may not yield predictions 
that generalize to application contexts. Moreover, 
generalizability is a matter of degree (Woodward, 2000, 
2003). We may encounter occasions on which a relation that 
we have assumed to be generalizable unexpectedly fails to 
hold (e.g., when on a trip up a tall mountain we find that 
eggs boiled the usual amount of time remain uncooked). 
The replicability crisis in medical research is a reminder of 
failures to generalize even in costly planned investigations, 
not to say in everyday inferences.  The need to go beyond 
one’s current set of candidate causes is ever present.  



Given the goal of formulating useable causal knowledge, 
information about a failure to reach that goal – failure 
indicated by a notable deviation from the outcome expected 
assuming that the acquired knowledge generalizes when 
applied – would be useful for assessing whether to retain or 
revise that knowledge. Along with our colleagues, we have 
proposed that mathematical functions characterizing the 
sameness of influence of a cause across contexts – functions 
which differ depending on the form of the cause and effect 
variables (e.g., binary vs continuous) rather than their 
content (e.g., tobacco smoking causes lung cancer) – play a 
critical role in the construction of causal knowledge (e.g., 
Cheng, Liljeholm & Sandhofer, 2013; Cheng & Lu, in 
press). We term these causal-invariance functions. 
Whenever there are too many possible causal models to 
exhaustively evaluate, causal invariance is a helpful signal.  

We have further noted that the vastness of the search 
space of possible causal representations renders the use of 
causal invariance not merely helpful but essential. A basic 
tenet of cognitive science -- that our perception and 
conception of reality are our representations -- implies that 
the search space of the representation of reality is infinite. In 
an infinite search space, an exhaustive evaluation of the 
possible causal models is not merely practically infeasible, 
but in principle impossible.  Given the nature of the problem 
of causal knowledge construction, the need to go beyond 
one’s current candidate causes becomes clear. Deviation 
from the outcome expected based on causal-invariance 
functions serves as an essential navigating device. 

What if the need for revision is signaled instead by 
deviation from a causal-interaction (i.e., non-causal-
invariance) criterion?  In that case, that is, if candidate c’s 
influence on target effect e is expected to vary depending on 
the state of the background causes, there would be a 
deviation from expectation -- signaling a need to revise 
causal knowledge -- when the influence of c in fact 
generalizes across contexts. Conversely, no deviation from 
expectation would confirm that c interacts with background 
causes (its inferred influence therefore should not generalize 
across contexts). But no deviation from expectation means 
no signal to revise. Given an inverted signal to revise, in the 
infinite search space of possible representations of reality, 
the acquired causal knowledge is unlikely to hold when 
applied or to replicate when further tested. 

If our thesis on the essentiality of the concept of causal 
invariance is correct, we would expect young children to use 
the concept, even when its use requires mathematical skills 
that are far beyond the children’s general level of 
mathematical competence, and even though such usage 
contradicts an irrational but common practice in medical or 
business research. Our two studies on preschool-aged 
children tested their use of a causal-invariance versus a 
causal-interaction criterion. 

Analytic Knowledge of Causal Invariance 
For all situations, every observed outcome is inherently 

the outcome due to the totality of its causes; the contributing 

causal relations are not differentiable by observation. When 
background causes are present, the unobservability of 
causation requires that causal learners adopt an assumption 
(either tacitly or explicitly) regarding how the total causal 
influence that results in the observed outcome is 
decomposed into the influences by the candidate and the 
background causes. The functions characterizing the 
decomposition are often called integration functions.  
Causal invariance functions are integration functions that 
specify the sameness of causal influence across contexts. 
Different integration functions yield different causal 
conclusions (e.g., see Lu et al, 2008). Our Study 1 presents a 
situation where multiple integration functions yield 
qualitatively different causal recommendations. 

One might argue, however, “Why would a particular 
integration function have a special status? Which integration 
function is appropriate depends on the domain. Although 
causal-invariance functions explain the results from many 
experiments (e.g., see Lu et al., 2008), perhaps due to 
reasoners’ prior knowledge of how some causes combine 
their influences in certain scenarios, other integration 
functions may be more appropriate for describing how 
causal influences combine in other domains.” Even if 
causal-invariance functions are the default integration 
functions, the argument may go, “whenever these functions 
do not fit the data from a domain, they would be – and 
should be – given up in favor of a better-fitting integration 
function. Causal-invariance functions may be a 
convenience, but the key factor is how well an integration 
function explains causation in a domain.  Adherence to 
particular integration functions regardless of domain would 
be irrational.” This argument may appear to have empirical 
support: Adults and even children have been shown to be 
able to learn various causal integration functions and 
generalize their learning to novel variables presented in the 
experiments (e.g., Lucas et al., 2014; Melchers et al., 2004).  

To explain the relation between our work and work on 
integration-function learning, we make two distinctions: 1) a 
distinction between analytic and empirical knowledge (cf. 
Hume’s, 1739, “truths of reason” and “matters of fact”) and 
2) a part-whole distinction, between a “whole” cause 
(elemental or complex) and an interactive component within 
a whole cause. Whereas empirical knowledge is content-
specific and justified by experience or data, analytic 
knowledge is content- and domain-general (i.e., formal) and 
is justified by reason, by what deductively follows based on 
the meaning of the concepts in question. Previous work has 
studied the generalization of acquired empirical (data-based) 
integration functions.  In contrast, our work studies the role 
of a causal-invariance function as analytic knowledge, 
operating as a default and a revision criterion in causal-
knowledge construction, with both roles motivated by the 
(tacit) goal of formulating useable causal knowledge.   

The combination of biological factors that lead to 
“healthy forest growth” is a whole cause of that outcome; 
adequate nitrates in the forest soil is an interactive 
component in that complex whole cause. Arsonists and the 



lumber industry are two other whole causes that influence 
that outcome. Likewise, the gravitational force from a 
celestial body y on a celestial x is a whole cause of x’s 
motion; the masses of bodies x and y and the distance 
between them are interactive components within that whole 
cause. The gravitational forces from other celestial bodies 
on x are other contributing whole causes of x’s motion, 
independently influencing that motion.  

Note that within the same domain (e.g., gravitational 
force), an interaction function (i.e., Newton’s law of 
universal gravitation) integrates the influences from specific 
component factors (e.g., the masses of the two celestial 
bodies in a pairwise gravitational force) and a causal-
invariance function (vector addition) integrates the 
influences from multiple whole (presumably non-
interacting) causes (e.g., the gravitational forces from 
multiple bodies on a target body simply sum up).  To enable 
prediction, the aim of causal-knowledge construction is to 
formulate whole causes (elemental or complex) that are 
teased apart from, that do not interact with, other causes 
(e.g., whole causes in the background). 

Because causal-invariance and causal-interaction 
functions exist within the same domain, empirical 
integration functions are content- or context-specific rather 
than domain-specific. Whether an acquired interaction-
integration function generalizes to other candidate causes 
depends on the perceived similarity between the relevant 
causal mechanisms (e.g., Lucas & Griffiths, 2010, Expt. 5; 
Wheeler, Miller, and Beckers, 2008, Expt. 3) as well as on 
situational variables (e.g., Wheeler et al., 2008, Expts 1 & 2; 
the demand characteristics of an experiment).  In contrast, 
causal-invariance functions (e.g., vector addition, the noisy-
AND-NOT function in Eq. 2) are formal, specific to 
variable types (vectors & binary variables, respectively), but 
general across domains, contents, and contexts. As 
explained earlier, for the goal of constructing useable causal 
knowledge, only causal-invariance functions can serve as a 
default and a revision criterion for integrating the influence 
of ideally whole candidate causes with the influence of 
(potentially unknown) other causes.  

Causal-Invariance Functions for Binary Variables 
The causal-invariance functions for two binary causes of a 

binary effect – a candidate cause of an outcome and the 
background causes as group – are as follows (e.g., Cheng, 
1997; Pearl, 1988). There are different but logically 
consistent functions for potentially generative and 
potentially preventive candidate causes. 

For a candidate cause c that potentially generates effect e 
and does so independently of alternative causes in the 
context, denoted a as a group, the probability of observing e 
is given by a “noisy-OR” integration function, 

 
where c ∈{0,1} denotes the absence and the presence of 
candidate cause c, e ∈ {0,1} denotes the absence and the 
presence of effect e, qc represents the generative power of 
the candidate cause c, and wa represents the probability that 

e occurs due to all background causes, known and unknown. 
For a candidate cause c that potentially prevents effect e, the 
probability of observing e is given by a “noisy-AND-NOT” 
integration function: 

where pc is the preventive causal power of c.  These “noisy-
logical” integration functions (terminology due to Yuille & 
Lu, 2008), under the assumption that there is no 
confounding [i.e., when P(a = 1|c = 1) = P(a = 1|c = 0)], 
imply respectively equations for estimating qc and pc. The 
equation for estimating preventive power pc, for example, is: 

 
Our experiments test preschoolers’ use of noisy-logical 

functions, the probabilistic version of disjunction, in their 
role as analytic knowledge of causal invariance for binary 
variables. Testing for knowledge of probabilistic causal 
invariance rather than deterministic disjunction provides a 
stronger test of our thesis. 

Preschooler Experiments 
Our two studies with preschool children tested our causal-

invariance hypothesis against alternative hypotheses, 
including ones in addition to the linear-integration rule 
tested in Liljeholm and Cheng (2007). The linear rule states 
that the observed value of the outcome is explained by the 
sum of the individual causal influences present. Our studies 
concern evaluating the effects of two treatments for 
removing (or preventing) an undesirable outcome, to decide 
which treatment best removes the outcome. Generalizing 
across contexts in the scenario involves generalizing from a 
farm context to a zoo context.  Study 1 tested a situation in 
which the noisy-AND-NOT and linear integration rules 
yield opposite recommendations for action, and the 
divergence does not diminish with increased sample size.   

Unlike the event frequencies in Liljeholm and Cheng’s 
experiments, the event frequencies in Study 1 (see Table 1) 
were constructed so that logistic regression and the linear 
rule recommend the same action (see Cheng et al., 2003 for 
an explanation of the shared recommendation), contrary to 
that recommended by the noisy-AND-NOT rule. Logistic 
regression is a widely used statistical procedure in the 
medical sciences for evaluating the causal effects of 
treatments for binary outcome variables.  Binary variables 
are common in medicine (e.g., whether or not a bone is 
fractured, a tumor is malignant, a woman is pregnant, a 
patient survives).  
    In both Studies 1 and 2, the children listened to an 
interactive story that concerns two brothers – a farmer and a 
zookeeper – who noticed that some of their animals had red 
dots on their faces.  They were told, “The animals didn’t 
seem sick at all, but the red dots made them look kind of 
funny.” They heard that two “really tasty” and healthy 
treats, one a grain and the other leaves, might make the red 
dots go away.  The brothers decided to figure out whether 
the treats work.  First, they visited the farm, and fed the 
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grain treat to every farm animal; later they visited the zoo, 
and fed both treats to every zoo animal.  
  Table 1 displays the pattern of event frequencies at the 
farm and at the zoo for Study 1. The critical “transfer” 
question is:  To relieve red dots on new farm and zoo 
animals that have red dots on their faces, if one has to 
choose one and only one treat, what is one’s best bet on 
which treat to use, grain or leaves?  Assume that neither 
treat has any bad effects. 

 

 Table 1:  Event frequencies for Study 1  

 
Intervention 

Farm 
Grain 
only 

 Zoo 
Grain &  
leaves 

Animals with dots: 
Pre intervention  

9/10  4/10 

Animals with dots: 
Post intervention  

6/10  1/10 

Number Cured 3  3 
Fraction Cured 3/9  3/4 
	
    Regardless of how “sameness of influence” is defined, the 
rationale underlying the choice is:  Assuming the grain 
operates the same way across contexts (i.e., farm and zoo), 
then if the influence of the intervention (grain at farm vs. 
both treats at zoo) is observed to be the same across 
contexts, one’s best guess would be that leaves had no 
influence – grain alone would already explain the outcome.  
But, if the influence of the intervention varied across 
contexts, one would attribute the difference to leaves.  

Whereas the causal-invariance function predicts 
recommending leaves, models adopting a linear integration 
rule, frequentist or Bayesian, recommend using grain.  Here 
we briefly sketch inferences according to the two rules (for 
prediction details see Cheng et al., 2013). 

First, according to the noisy-AND-NOT integration rule 
(using Bayesian maximum-likelihood estimates of causal 
strengths as the predictor), the outcomes at the farm suggest 
that the grain removes red dots in a farm animal with a 1/3 
probability. Assuming the grain’s efficacy remains the same 
for the zoo animals as for the farm animals, grain would be 
expected to remove red dots with a probability of 1/3 in 
every zoo animal. It should be clear that the treat ingested 
by each animal does not “know” what the treat does in other 
animals (the independent-trials assumption).  It follows that 
only 1/3 of the 4 zoo animals with red dots would be 
expected to have their red dots removed by the grain.  
Because in fact 3 of these 4 animals had their red dots 
removed, considerably more than 1/3 of the 4, the leaves 
must be explaining the large difference between the 
expected and the observed outcome.  The causal-invariance 
function therefore predicts recommending leaves for the 
new animals. Note the use here of deviation from invariance 
as a criterion for revising one’s causal beliefs, from grain as 
a preventive cause to leaves as a preventive cause also. 

In contrast, according to the linear integration rule, 
because 3 of 10 animals were “cured” both at the farm and 

at the zoo, the addition of the leaves treat at the zoo does not 
result in any additional cured animals. This rule therefore 
predicts that the leaves treat is noncausal, and recommends 
giving the new animals grain. 
  The transfer question can be equivalently stated in terms of 
an interaction with something in the context.  Both variants 
of the question address whether one’s initial causal belief 
regarding relieving red dots requires revision.  

Study 1 

Method 
Participants The participants were 29 children (13 male 

and 16 female) Children’s mean age was 3.42 years (range 
2.61 to 4.84 years, SD = .60 years). One additional child 
was excluded for failure to complete the task. Children were 
recruited from preschools in Los Angeles, CA. All children 
were fluent speakers of English and were learning English 
as a primary language. 

Procedure As mentioned, children first listened to the 
story about the farm and zoo animals with and without red 
dots on their faces. The farm animals received a grain treat 
intervention and the zoo animals received a simultaneous 
grain and leaves treat intervention. In the last part of the 
study, children were shown new farm and zoo animals and 
asked to choose between two potential interventions. 

Storybook Task The task was presented in a child 
friendly format, as an interactive storybook. The “reader” of 
the book was blind to any hypotheses of the study. Children 
were read the following cover story: 

“Once upon a time there were two brothers, one was a 
farmer and the other a zookeeper. The two brothers loved 
their animals very much and took very good care of them. 
One day, the brothers noticed that some of their animals had 
red dots on their faces.”  

After being reassured that the animals were not sick, the 
children were told about the two treats, and were asked to 
determine their efficacy. They were told that both tasty 
treats would be loved by the animals. 

“The two brothers decided to figure out whether the treats 
work.  First, they went together to the farm.  Then, they 
went over to the zoo.  Let’s look at what happened and see 
if YOU can figure out if the grain makes the red dots go 
away and if the leaves makes the red dots go away.” 

The farm context and the zoo context were presented 
separately, and the change in context was highlighted and 
emphasized. Animals in the farm context received the grain 
intervention only, whereas those in the zoo context received 
the grain and the leaves intervention in combination.  

Figure 1 depicts examples of the pre- and post- 
intervention pictures that children saw. Because it was 
critical for children to attend to 1) the presence or absence 
of the red dots and 2) the administered intervention, those 
aspects of the story were interactive. For example, children 
were told “Here is a cow before it ate anything today” and 
then were asked “Does this cow have any red dots?” 
Children’s responses were acknowledged (e.g., “You’re 



right he does have red dots”). Children were then handed a 
cut-out of the treat to feed to the animal. Next, children were 
asked to make a prediction (e.g., “Do you think the cow will 
have red dots on its face now that it ate the grain?”) After 
the child replied, the experimenter said, “Let’s see!” and 
showed the picture of the treat inside the animal’s tummy, 
and the presence or absence of red dots was noted regardless 
of how the child answered (e.g., “Look no more red dots!”). 
This procedure was repeated with all twenty animals. 

	
Figure 1: Examples of the pre- and post- intervention 
pictures. 

Treat Selection The critical test was presented to children 
at the conclusion of the story. Children were shown two 
new animals (one farm and one zoo animal) with red dots on 
their faces and were asked to select only one of the treats, 
either the grain or the leaves, to make the animals’ red dots 
go away. 

Event Frequency Table 1 depicts the event frequencies 
for the Study 1. To control for primacy and recency effects, 
the first trial at the farm and at the zoo showed the same 
event type; likewise, the last trial at the two locations 
showed the same event type. (A replication of the study 
randomized trial order; see note at end of Study 2.) As 
explained earlier, the noisy-AND-NOT integration rule 
predicts choosing leaves, but the linear integration rule 
predicts choosing grain.  Note that the linear prediction 
requires a subset of the arithmetic steps required by the 
noisy-AND-NOT prediction. The linear rule also predicts 
the outcome at the zoo perfectly assuming fewer causes than 
the noisy-AND-NOT rule, namely, a single cause rather 
than two causes.   
 

Results 
Children were attentive during the storybook reading and 

rarely responded incorrectly about the presence or absence 
of red dots. Across all children and all questions there were 
7 initial incorrect responses (out of 360 total queries). For 
these seven responses children were corrected (e.g., “Look 
here are red dots”) and queried again. 
  The critical result concerned which treat children selected 
to make the animals’ red dots go away. As Figure 2 shows, 
children overwhelmingly chose the leaves X2 (1) = 12.4, p 
=.0004, suggesting that children’s responses fit with the 

noisy-AND-NOT rule rather than with the linear rule.  They 
did so despite the linear rule’s relative arithmetic simplicity 
and its perfect accuracy predicting the outcome at the zoo 
using fewer causes.  

 
Figure 2: Results from Study 1 depicting the number of 

children selecting the grain treat versus the leaves treat. 

Study 2 
There are alternative explanations for why the children 

selected leaves in Study 1.  The children’s attention could be 
biased toward the newer second treat.  The children might 
simply have a bias toward leaves. Or they might have used a 
heuristic: pick the treat uniquely associated with the fewest 
animals with red dots after the intervention. Previous related 
experiments have not ruled out analogous hypotheses. To 
rule out all three alternative explanations, Study 2 presented 
the same story but with the event frequencies in Table 2 to a 
separate group of preschoolers. As should be clear, the 
heuristics and biases still predict choosing leaves.  For 
example, as before, fewer animals had red dots after the 
intervention at the zoo than at the farm (one and two, 
respectively).  The noisy-AND-NOT rule predicts choosing 
grain this time; the “treatment” maintained the same 
preventive strength of ¾ at the farm and at the zoo.  Along 
with the above heuristics and biases, the linear rule predicts 
no change from the recommended action in Study 1. 

 
 

Table 2.  Event frequencies for Study 2 
  

 
Intervention 

Farm 
Grain 
only 

 Zoo 
Grain &  
leaves 

Animals with dots: 
Pre intervention  

8/8  4/8 

Animals with dots: 
Post intervention  

2/8  1/8 

Number Cured 6  3 
Fraction Cured 6/8  3/4 
	
 Method 

Participants The participants were 28 preschool-aged 
children (M= 4.38 years, range 2.61 years – 5.18 years, SD 
= .66 years). 14 were male and 14 were female. An 
additional two children were excluded for failure to 



complete the task and/or attend to the story. Children were 
recruited similarly using the same criteria as for Study 1.  
  Procedure The procedure replicated that in Study 1 except 
that there were 16 trials in total, with the event frequencies 
for the farm and zoo animals as specified in Table 2. 
 

Results As before, the critical result concerned which treat 
children selected to make the animals’ red dots go away. 
Figure 3 shows that children’s pattern of responses reversed 
in Study 2: children were now significantly more likely to 
select the grain treat, X2 (1) = 5.14, p =.02. 

We replicated the pattern of results in Studies 1 and 2 in a 
variant in which the children were randomly assigned to the 
two studies, and the order of trials in each context (farm and 
zoo) was randomized for each child.  

 
Figure 3: Results from Study 2 depicting the number of 

children selecting the grain treat vs. the leaves treat. 

Discussion 
Our results favor young children’s use of a causal-

invariance function over use of the simpler linear function, a 
preference for one of the candidate causes, or a heuristic to 
choose the candidate more frequently paired with the 
desired outcome. Only the noisy-AND-NOT rule 
representing causal invariance can explain the opposite 
predominant choices across both our studies. More complex 
alternative hypotheses, such as use of the linear function in 
combination with a bias toward the candidate with the more 
frequent pairing, await further study. 

The goal of our present paper is to provide support for the 
essentiality of the concept of causal invariance, as a default 
and a criterion for belief revision, in the construction of 
useable causal knowledge, when the set of possible causal 
representations is too large to exhaustively evaluate.  Our 
findings indicating the early use of a probabilistic causal-
invariance function -- embodying the rather abstract concept 
of the unchanging nature of the forces of change -- suggest 
that the generalizability of causal knowledge, along with 
parsimony and logical consistency, is not a mere wish but a 
constraint in the rational construction of causal knowledge. 
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